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Abstract. – We study the pathway of generating discrete breathers in damped and driven
micromechanical cantilever arrays. Using the concept of the nonlinear response manifold we
provide a systematic way to find the optimal parameter regime in damped and driven lattices
where discrete breathers exist. Our results show that discrete breathers appear via a new
instability of the manifold, different from the anticipated modulational instability known for
conservative systems. We present several ways of exciting breathers, and compare also to
experimental studies in antiferromagnetic layered systems.

The existence and the properties of intrinsic localized modes (ILMs) or discrete breathers
(DBs) in nonlinear lattices have been investigated thoroughly during the last years (see [1] and
references therein). Existence proof confirms that these localized modes are exact solutions
in systems of coupled anharmonic oscillators [2]. Numerical techniques have been developed
starting from the anticontinuous limit, for the study of the existence and the stability of
DBs [1, 3]. Under certain conditions they can become mobile if they are perturbed in the
appropriate direction in the phase space [4].

In addition, an impressive number of various experiments during the last years have verified
the existence of these modes in many systems like micro-mechanical cantilever arrays [5, 6],
antiferromagnets [7–9], Josephson junction arrays [10,11], coupled optical waveguides [12,13]
atomic vibrations of highly nonlinear materials [14–16] and Bose-Einstein condensates on
optical lattices [17].

The bulk of the central theoretical results has been achieved for conservative systems. One
good reason for that is the complexity of the DB properties. While DBs typically persist under
the influence of weak dissipation (which should also include an energy pumping mechanism),
various realisations of dissipation (dc driving, ac driving, fluctuations, linear vs. nonlinear
damping etc.) modify DB properties in a specific way, turning the limiting conservative case
into an ideal starting playground for setting a coherent frame of the understanding of their
properties. Since most of the experimental studies face dissipation, each case may call for a
specific additional theoretical study.

DB observation in cantilever arrays [5,6] and antiferromagnets [7–9] involved the excitation
of the system with spatially homogeneous external fields, triggering a spatially inhomogeneous
system state via some inherent instability. For conservative systems the modulational insta-
bility (MI) of band edge plane waves is known to provide such a path. Especially for the case
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of driven cantilevers, the MI approach for conservative systems was used to design an exper-
imental system of alternating short and long cantilevers [5, 6]. The results we present below
show that DBs appear via a completely different instability. We demonstrate that by exciting
DBs in arrays with identical cantilever length, which would be impossible following the MI
argumentation. The reason is that the spatially uniform external field inherits its uniformity
onto the dynamics of the cantilevers regardless of the internal structure. Especially the field
can generate frequency-phase oscillations, which are not existing in the absence of the field.

In order to study the driven cantilever system we use the model equations in [5, 6] and
introduce the dimensionless time t → t/t0 and displacement xl → xl/a0, where t0 and a0 cor-
respond to a characteristic time and length of the system. The equations of motion describing
the cantilever system can be then written as a system of coupled anharmonic damped and ac
driven oscillators

ẍl + γẋl + a2xl + a4x
3
l − C(xl+1 + xl−1 − 2xl) = A(t). (1)

The oscillator displacements xl describe the deflection angle of the l-th cantilever from its equi-
librium position. The hard-type anharmonicity tends to increase the oscillation frequencies
with growing amplitudes. This model neglects the influence of longer than nearest-neighbor
interactions, which is not crucial for the understanding of the main qualitative DB proper-
ties. The dimensionless parameters are related with the ones of the experiment in refs. [5, 6]:
γ = t0/τ , a2 = k2t

2
0/m, a4 = k4t

2
0a

2
0/m, C = klt

2
0/m and A = αt20/a0. Using the experimental

values in [5, 6] and setting a2 = a4 = 1, we find t0 = 1.34238 · 10−6 s and a0 = 2.46 · 10−5 m.
The friction and coupling parameters become γ = 1.534 ·10−4 and C = 0.07953. The spatially
uniform ac driving A(t) in (1) is generated by a piezoelectric crystal vibration in the original
experiments.

Neglecting the damping γ, the ac driving A(t) and the nonlinear force terms in (1) one
readily derives the only possible solutions, namely plane waves xl ∼ ei(ωqt−ql) with the lin-

ear dispersion relation ωq =
√

1 + 4C sin2(q/2) relating the plane-wave frequency ωq to its

corresponding wave number q. Reinstating the nonlinear force terms in (1) leads to two
conclusions [1]: i) discrete breathers, i.e. time-periodic and spatially localised solutions
xl(t) = xl(t + Tb) , x|l|→∞ → 0 exist for frequencies Ωb = 2π

Tb
> ωq=π; ii) the q = π plane-

wave mode turns (modulationally) unstable at amplitudes ∼ 1/N , where N is the number of
cantilevers, and DBs bifurcate from this plane-wave mode along this very instability route.
What can we expect if both damping and ac driving are added as well? DBs persist without
much change, thus the ac driving frequency choice ωd > ωq=π is well reasoned. However,
instabilities of conservative systems may turn sensitive to effects of damping. Assuming that
the MI of the staggered q = π mode is the track to follow, the choice of a nonstaggered ac
driving is not appropriate. Note that the experimental design of alternating short and long
cantilevers splits the spectrum ωq into two bands separated by a gap. In addition it formally
transforms the q = π mode of the system with identical cantilevers into the q = 0 mode of the
upper band for the system with alternating cantilever lengths. Yet the staggered character
of this mode is of course preserved inside each unit cell which contains now two neighboring
cantilevers. Thus the mismatch between the staggered MI mode and the nonstaggered ac
driving remains also for systems with alternating cantilever length.

With the above parameters 1 ≤ ωq ≤ 1.1481. The narrowness of the band as compared to
the characteristic frequency values is due to the weak coupling constant C. Let us start then
from the uncoupled limit. In that case each oscillator evolves independently. Assuming for
the moment small amplitudes of all oscillators, the presence of a weak driving will (after some
transient time) bring them all into a unique oscillatory state, thus all oscillators will move
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Fig. 1 – The nonlinear response manifold (NLRM) for C = 0.0079 and ωd = 1.3. Solid line: homoge-
neous branch; dashed line: various breather branches for x0,0. Thick lines correspond to stable parts of
the manifold; thin lines: to unstable ones. Long-dashed lines correspond to the zero x0,0 and A0 axes.

in phase (with each other). Consequently, we have to study the stability of a nonstaggered

extended time-periodic state for weak coupling as well, no matter whether the frequency of
the driving is located above or below the band ωq.

For a periodic driving of the form A(t) = A0 cos(ωdt), eq. (1) supports periodic solutions.
It is easier to study first the properties of these solutions at zero friction (γ = 0), and then
examine the modifications when γ �= 0. Newton method [1, 3] was used for the tracking of
periodic solutions with frequency equal to the external driving of the form: xl(t) = x0,l ·f(ωdt)
where x0,l is the amplitude of the oscillation, and f(ωdt) is a periodic function with period
2π. The Newton scheme was initiated with a very small driving amplitude (A0 ≃ 0), and the
response of the system (i.e. the amplitude of the oscillations x0,l) was followed as A0 was
varying. Thus we reconstruct the full Nonlinear Response Manifold (NLRM) [18]. The main
features of the NLRM are shown in fig. 1 for a driving frequency ωd = 1.3.

The NLRM close to the origin follows from linearising the equation of motion (1). The
exact solution of the system in this limit is xl(t) = x0,l cos(ωdt) with x0,l = −A0/(ω

2
d − 1)

(this is a straight line with slope s = −1/(ω2
d − 1)). This is a homogeneous branch (HB) (all

the oscillators are in phase). There is a phase difference of φ = π between the driving and
the response of the system. The NLRM is symmetric around the origin due to xl(t+π/ωd) =
−xl(t) and A(t+π/ωd) = −A(t). Due to this symmetry, for each branch of the manifold with
positive x0,0, there exists the equivalent branch corresponding to the negative values (with
the appropriate change in the sign of A0). These branches correspond to the same solution
but translated by half a period in time.

Increasing |A0|, the displacement x0,0 of HB increases, up to the first turning point (TP)
(fig. 1) (the use of the absolute value of A0 is because we refer to the distance from the origin).
After the turning point x0,0 continues to increase, while the driving amplitude decreases down
to zero at the first crossing point (CP1). This crossing point corresponds to a homogeneous
solution with all the oscillators oscillating with the same amplitude x0,0 and zero driving.
This is a stable periodic solution with period equal to the driving period, and it exists due
to the frequency increasing, hard anharmonicity term in the equations of motion and because
ωd > ωq. The NLRM manifold of the HB continues further from CP1 with again nonzero A0,
but the solution is now in phase with the driving.
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Fig. 2 – (a, b) The NLRM for different values of the driving frequency: (a) ωd = 1.2, (b) ωd = 1.4.
The parameters are the same used in fig. 1. (Thick lines correspond to stable parts of the manifold,
thin lines to unstable ones.) (c, d) The response x0,0 and the phase difference φ of the manifold in
the neighborhood of the first crossing point for different values of the friction. The continuous line
corresponds to γ = 0, the dashed-dotted line to γ = 0.001 and the dashed line to γ = 0.005. The
long-dashed line in (a) and (b) corresponds to the zero A0 axis.

The Floquet stability analysis [1] of the HB reveals that close to the origin the manifold
is linearly stable. An instability appears before the TP and the HB becomes unstable. The
homogeneous branch remains unstable between the TP and the CP1. After the CP1, the
homogeneous branch turns stable again (see fig. 1).

The instabilities of the HB mark the bifurcation of spatially inhomogeneous solutions
—various breather states— of the HB. This point is labeled as BP in fig. 1. For a system of
N oscillators, at the first instability, N new branches of the NLRM appear. Each of these
branches correspond to a single breather centered at a different site on the lattice. In fig. 1
we show two of these branches with dashed lines bifurcating from the homogeneous solution
at the bifurcation point BP. Starting from the bifurcation, the displacement of the central
oscillator increases, while |A0| decreases. For A0 = 0 the manifold passes through the second
crossing point (CP2). This branch of the manifold corresponds to a breather, and is stable
for A0 > 0 and unstable for A0 < 0. After that, the manifold turns, and passes through
further crossing points. Thus for fixed ωd we have multistability for small enough A0 with a
large-amplitude and a small-amplitude HB coexisting together with breather states. For large
enough A0 only the large-amplitude HB survives.

The NLRM depends on the driving frequency ωd. In fig. 2 (a and b) we show a part of the
NLRM for two different values of the driving frequency. In fig. 2(a) ωd = 1.2 and in fig. 2(b)
ωd = 1.4. With increasing frequency the slope of the manifold decreases, the crossing points
appear for larger values of x0,0; as a result, the bifurcation and the turning points appear for
larger values of |A0|.

The properties of the manifold are slightly modified due to the presence of friction (γ �= 0).
The NLRM between the origin and the crossing point (CP1) for γ = 0 is in anti-phase with the
driver, while after the crossing point the NLRM is in phase with the driver. For γ = 0 therefore
there is a phase difference of φ = π in the response of the system around a CP. When a small
friction is introduced in the system, it creates an extra small phase difference between the
driver and the response. This phase difference between the driver and the response increases
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Fig. 3 – Energy density as a function of time and space. The driving frequency is initially ramped
from ωd = 1.14 to ωd = 1.4, and then it remains fixed (marked by the vertical dashed line). Energy
pumping is observed during the ramping. At the end of the ramping process, breathers are created,
and one of them locks to the driving and survives.

in the neighborhood of the CP. As a result, the solution at the CP disappears due to friction,
but there is a smooth transition between the two different branches of the manifold. The phase
difference φ varies smoothly from π − ǫ− to 0 + ǫ+, where ǫ± correspond to the small phase
differences created by the friction on the large- and small-amplitude branch, respectively,
far from the CP. For weak damping this transition occurs very close to the CP. The smooth
transition between the two branches of the manifold in the neighborhood of (CP1) as a function
of |A0| is shown in fig. 2(c) for different values of the friction. The smooth transition in the
phase difference φ is shown in fig. 2(d). Far from the CP, the properties of the manifold are
only slightly modified by the nonzero friction.

As follows from fig. 1 and fig. 2 (a and b), the stable breather branch is not connected to
the stable HB of the NLRM. Thus we can exclude an easy way of exciting the system in the HB
and tuning some parameter (amplitude or frequency of the driving) such that we continuously
join the breather branch. This calls for stochastic excitations of the system to enforce a
nonzero probability to end up in a breather state when initially starting from a HB. Similar to
the experiments [5,6] we performed a ramping of the frequency ωd from 1.14 (inside the band)
to 1.4 (above the band) for fixed amplitude A0 = 0.008 (cf. fig. 4(b)). According to fig. 2, the
final state corresponds to the multistability domain of the NLRM. If the system was initially
at rest, the final state is observed to be the small-amplitude HB. However, if we consider
some random initial conditions for the cantilever deflection angles, uniformly distributed in
the interval (−0.05, 0.05), the ramping process excites a finite-time energy pumping (fig. 3).
During the pumping period, the oscillation amplitudes of the cantilevers are amplified and
regions of large-amplitude oscillations are created. After the ramping finishes, most of these
large-amplitude oscillations decay back into the low-amplitude HB, while some of them may
lock to the driver and turn into a stable breather. The average energy per oscillator is shown
in fig. 4(a) as a function of time (line 1). During the ramping, there is a frequency window,
where energy is pumped into the system, and then the system relaxes due to dissipation. Line
2 shows the energy of the locked breather site.

The creation of large-amplitude oscillations can also be observed in the absence of fre-
quency ramping, when the randomness in the initial displacements is stronger. If we perform
simulations in the absence of a frequency ramping, but with larger fluctuations in the distri-
bution of initial displacements (Gaussian distribution of initial displacements with zero mean
and variance D = 0.5) we observe again large-amplitude oscillations which can lock into sta-
ble breathers or decay. Keeping the frequency and the driving amplitude fixed (ωd = 1.4 and
A0 = 0.008) we observe the creation and locking of breathers similar to the locked breathers
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Fig. 4 – (a) Average energy per oscillator as a function of time (line 1, scaled by a factor of 10 for
better observation) and the energy of the locked oscillator (line 2). The parameters and the frequency
ramping are as in fig. 3. (b) The frequency ramping scheme. After the vertical dashed line the driving
frequency remains constant.

found in fig. 3. The behavior of the system is similar when we perform simulations in a system
with alternating long and short cantilevers.

The NLRM can be also used to study the breather excitation in antiferromagnetic sys-
tems [7,8] where external driving was used as well. The observed breather destruction in these
experiments is similar to the process presented in fig. 5. In analogy with the experiment a
strong driving at frequency ω1 = 1.8 with A1 = 0.8 and duration of t = 698.1 is used, to-
gether with initial displacements being uniformly distributed in the interval (−0.25, 0.25). As
a result, a DB is formed (fig. 5(a)). A subsequent long driving at a frequency ω2 = 1.4 (being
located closer to the spectrum ωq) is exciting the system with a small amplitude A2 = 0.008.
Because of the frequency mismatch the breather with ω1 will start to decay, but tend to slow
down the decay when its frequency is close to ω2 (fig. 5(c)). Similarly to the experimental case
we add a third weak driving signal with ω3 = 2 and amplitude A3 = 0.0004. That hinders
the locking of the DB to ω2. Right after the DB frequency passes ω2, its relaxation speeds
up and the excitation is destroyed very quickly (fig. 5(b), cf. also fig. 3 in [7]. The observed
energy release is fixed by the energy value of a DB locked to the ω2 driving and explains the
experimental observation of equal height steps in the relaxation of DBs. At the same time we

Fig. 5 – (a) Energy density evolution for a sequence of different driving (see text for details); (b) time
dependence of the DB energy observed in (a); (c) time dependence of the DB frequency observed in
(a). The two dashed lines mark the frequencies ω1 and ω2. The dash-dotted line corresponds to band
edge frequency ωπ.
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interpret the observed smooth decrease of the emission signal in fig. 3 in [7] as a process of
slow relaxation of DBs with frequency ω1 towards DBs with frequency ω2.

The NLRM study shows that breathers can be obtained in a driven and damped system by
carefully choosing the frequency (outside the phonon band) and amplitude of the driving force
(not being too large) such that the NLRM is activated inside the multistability domain. We
have shown that localised breathers emerge from the homogeneous solution via an instability
of the NLRM completely different from the expected MI picture. The fact that the stable
breather branch is disconnected from the stable HB, implies that one needs random pertur-
bations in the initial conditions in order to perform a crossover from one to the other. There
exist various pathways of generating breathers, either by frequency ramping which causes en-
ergy pumping or by initially strongly exciting the system with random displacements. These
pathways have to be designed in such a way that the system will tend to the small-amplitude
HB of the NLRM, with some fluctuations growing locally into large-amplitude oscillations,
which finally transform into breather states.
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